NEWTON'S LAW OF GRAVITATION — COMPLETE STUDY MATERIAL

Prepared by: Dr. USHA KUMARI

Assistant Professor, Department of Physics, Maharaja College, Ara

1. Introduction

Gravity is the universe's quiet puppeteer, pulling planets in their orbits and keeping your feet loyal to the ground. Newton transformed this invisible tug into a precise law, stitching together the Earth, Moon, and stars with a single mathematical thread.

2. Newton's Law of Universal Gravitation

Statement:

Every particle of matter in the universe attracts every other particle with a force that

- is directly proportional to the product of their masses, and
- 2. inversely proportional to the square of the distance between them.

Mathematically:

$$F=Grac{m_1m_2}{r^2}$$

Where:

- $_F$ = gravitational force
- m_1, m_2 = interacting masses
- $_r$ = distance between their centers
- $_{G}$ = universal gravitational constant

3. Universal Gravitational Constant (G)

$$G = 6.67 \times 10^{-11} \, \mathrm{N \, m^2/kg^2}$$

It is the cosmic glue-strength number. Its small value explains why we don't feel gravitational attraction toward nearby objects like chairs or books.

4. Vector Form of Gravitational Law

Gravity isn't just a number; it points.

$$ec{F}_{12} = -Grac{m_1m_2}{r^3}ec{r}$$

The negative sign hints that gravity always pulls.

5. Derivation of Newton's Law of Gravitation

Newton used two grand ideas:

(a) Kepler's Third Law

For a planet of mass $_m$ orbiting the Sun of mass $_M$:

$$T^2 \propto r^3$$

$$T^2=rac{4\pi^2}{GM}r^3$$

(b) Centripetal Force Requirement

A planet orbiting the Sun:

$$F = \frac{mv^2}{r}$$

Using
$$v=rac{2\pi r}{T}$$
 :

$$F=rac{4\pi^2 mr}{T^2}$$

Substitute from Kepler's ention:

$$T^2=rac{4\pi^2}{GM}r^3$$

So,

$$F=rac{4\pi^2mr}{\left(rac{4\pi^2}{GM}r^3
ight)}=Grac{Mm}{r^2}$$

Thus:

$$F=Grac{m_1m_2}{r^2}$$

Newton stitched together celestial dynamics and circular motion to reveal the law that rules galaxies.

6. Gravitational Field (Intensity)

The gravitational field at a point is the force per unit mass placed at that point.

$$ec{g}=rac{ec{F}}{m}=Grac{M}{r^2}\hat{r}$$

Gravity wants company; it pulls every mass inward.

7. Gravitational Potential

Potential at a distance $_r$ from a mass $_M$:

$$V = -\frac{GM}{r}$$

Negative sign means a mass is always bound unless energy is supplied to escape.

8. Gravitational Potential Energy

For two masses:

$$U = -G \frac{m_1 m_2}{r}$$

Two masses attract and "fall" toward lesser potential.

9. Motion Under Gravity

(a) Acceleration due to gravity

$$g=Grac{M}{R^2}$$

Variation with height:

$$g_h = g \left(1 - rac{2h}{R}
ight)$$

Variation with depth:

$$g_d = g \left(1 - rac{d}{R}
ight)$$

10. Applications of Gravitational Law

- Motion of planets
- Tides
- Satellite orbits
- Escape velocity
- Weight variation on Earth

11. Limitations of Newton's Law

- Fails at high speeds (near light)
- Fails in very strong gravitational fields
- Replaced by Einstein's General Relativity for precision

Yet, Newton's law remains the workhorse of classical mechanics.

12. Final Notes (Student-Friendly Summary)

Gravity is not a force that pushes—it's a quiet invitation. Everything pulls everything. From galaxies to grains of dust, all matter participates in this cosmic choreography.